Abstractions with MDP

homomorphisms enable transfer

of skills.

Online Abstraction with MDP

Homomorphisms for Deep Learning

Ondrej Biza and Robert Platt

Objective

We aim to learn abstractions for simple robotic manipulation tasks, such as the puck stacking task depicted in Figure 1, bottom. Abstractions can be create through *partitioning*. For instance, the puck stacking abstraction (Figure 1, top) partitions the continuous state space (Figure 1, bottom) into three blocks: "no stack, hand empty", "no stack, puck in hand" and "stack of 2, hand empty". However, state partition alone does not help as much because we still have thousands of actions for each state.

Hence, our abstractions should partition both the state and action spaces; they should also be learned *online* (i.e. from a stream of experience).

Methods

Our algorithm is based on the theory of Markov Decision Process (MDP) homomorphisms [1]. The main idea is to iteratively split the *state-action space* of the task until we arrive at a partition that captures all the important dynamics of the original problem. The splitting is accomplished through a fully convolutional network (Figure 1, left) that predicts the *outcome* of each action. The network is iteratively re-trained each time we split new state-action blocks.

Figure 1: Abstraction of state and action space (left), fully convolutional network for state-block prediction (right).

Task	Options	Baseline	Baseline,

The resulting state-action partition can be converted into a new, abstract, Markov Decision Process (e.g. Figure 1, top). We can then plan the optimal policy in the abstract MDP and map it to the original MDP.

Experiments

We test the learned abstractions in a pucks world domain (Figure 2). The abstractions are create for an initial task and then transferred to a new task. We measure the speed-up in learning given the abstractions (Table 1). The **Options** agent has an option (a temporally extended action, [2]) for reaching each *abstract state* from the original task (e.g. the three abstract states in Figure 1, top). It can execute these options at the start of the episode to reach a desirable state in the environment; the values of options are learned. **Baseline** is a deep Q-network and **baseline, weight sharing** is a deep Q-network initialized with the weights learned in the initial task.

References

share weights 2 puck stack to 3 puck $\mathbf{2558} \pm \mathbf{910}$ 5335 ± 1540 10174 ± 5855 stack 3 puck stack to 2 and $\mathbf{2382} \pm \mathbf{432}$ 3512 ± 518 2 puck stack 2 puck stack to stairs 4958 ± 3514 $\mathbf{2444} \pm \mathbf{487}$ 4061 ± 1382 from 3 pucks 3 puck stack to stairs $\mathbf{1952} \pm \mathbf{606}$ 4061 ± 1382 5303 ± 3609 from 3 pucks 2781 ± 605 3394 ± 999 6641 ± 5582 2 puck stack to 3 puck component stairs from 3 pucks to 3947 ± 873 5335 ± 1540 6563 ± 4299 3 puck stack stairs from 3 pucks to 5552 ± 3778 5008 ± 1998 2 and 2 puck stacks stairs from 3 pucks to 3996 ± 2693 3394 ± 999 4856 ± 3600 3 puck component 5335 ± 1540 8540 ± 4908 3 puck component to 3 $\mathbf{3729} \pm \mathbf{742}$ puck stack 2918 ± 328 3310 ± 627 1061 ± 1382 3 nucle component to

[1] Balaraman Ravindran. 2004. An Algebraic Approach to Abstraction in Reinforcement Learning. Ph.D. Dissertation.

[2] Richard S. Sutton, Doina Precup, and Satinder Singh. 1999. Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning.

5 puck component to	5510 ± 021	4001 ± 1302	2910 ± 32
stairs from 3 pucks			

Table 1: Abstraction transfer experiments in the pucks world domain; we measure the number of episodes required to learn the new task. **Figure 2**: Goal states of stacking pucks, building stairs and arranging a connected component.

This research was partially supported by grant no. GA18-18080S of the Grant Agency of the Czech Republic, grant no. EF15_003/0000421 of the Ministry of Education, Youth and Sports of the Czech Republic and by the National Science Foundation through IIS-1427081, IIS-1724191, and IIS-1724257, NASA through NNX16AC48A and NNX13AQ85G, ONR through N000141410047, Amazon through an ARA to Platt, and Google through a FRA to Platt. Take a picture to download the full paper

