

UNIVERSITY OF AMSTERDAM

Jung Yeon Park^{1*}, Ondrej Biza^{1*}, Linfeng Zhao¹, Jan-Willem van de Meent^{1,2}, Robin Walters¹ Equal contribution ¹ Northeastern University, Boston, MA, USA ² University of Amsterdam, Netherlands

Motivation

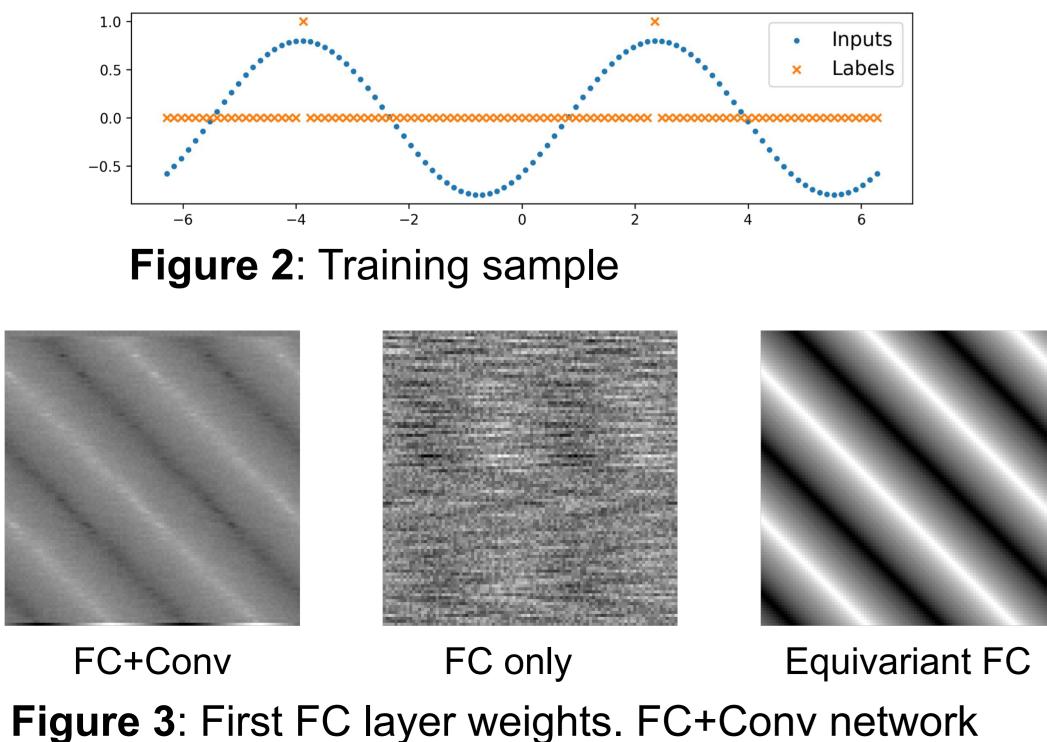
- Neural networks equivariant to symmetries, such as rotation and translation, are more generalizable and sample-efficient.
- Symmetries in natural data are difficult to express analytically, limiting the use of equivariant networks.



Figure 1: 2D rotation of an object can be expressed analytically for pixels, whereas a 3D rotation is difficult to compute.

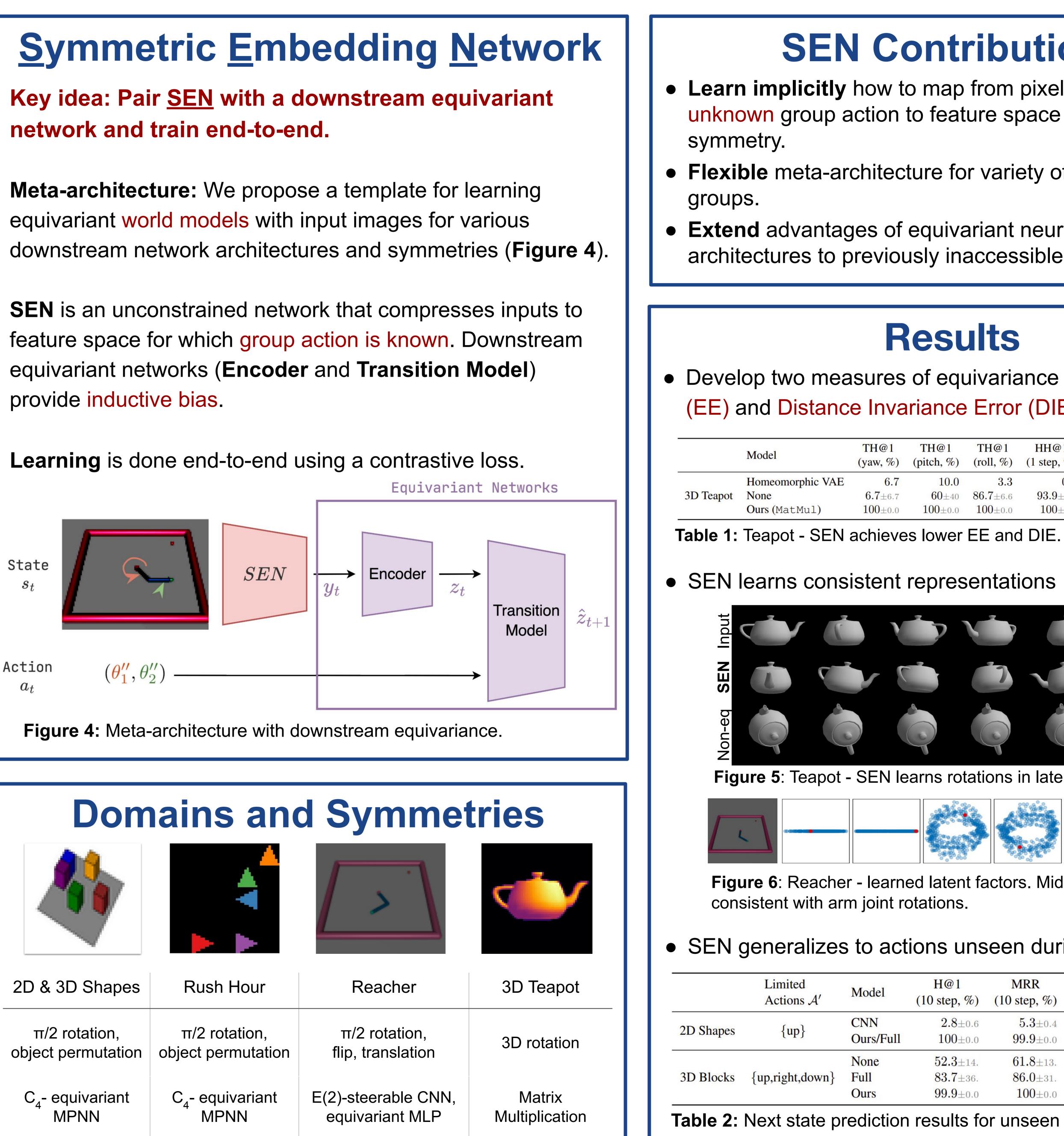
Illustrative Example

- Simple supervised sequence labeling task to test whether we can learn the input transformation
- Compose a fully connected (FC) layer with 1D convolutional layers and compare against only FC



learns shift equivariance

Learning Symmetric Embeddings for Equivariant World Models



2D & 3D Shapes	Rush Hour	Reac
π/2 rotation,	π/2 rotation,	π/2 rota
object permutation	object permutation	flip, trans
C ₄ - equivariant	C ₄ - equivariant	E(2)-steera
MPNN	MPNN	equivaria

SEN Contributions

• Learn implicitly how to map from pixel space with unknown group action to feature space with a known

Flexible meta-architecture for variety of different symmetry

• Extend advantages of equivariant neural network architectures to previously inaccessible domains.

Results

 Develop two measures of equivariance Equivariance Error (EE) and Distance Invariance Error (DIE).

1 %)	TH@1 (pitch, %)	TH@1 (roll, %)	HH@1 (1 step, %)	$\operatorname{EE}(S)$	DIE (1 step, $\times 10^{-2}$)
.7	10.0	3.3	0.9	2.41	0.68
6.7	$60 {\pm} 40$	$86.7{\pm}6.6$	$93.9{\scriptstyle \pm 2.2}$	$2.38{\scriptstyle \pm 0.04}$	$3.41 {\pm} 0.16$
0.0	$100{\pm}0.0$	100 ± 0.0	$100{\pm}0.0$	0.05 ± 0.0	$0.45{\pm}0.01$

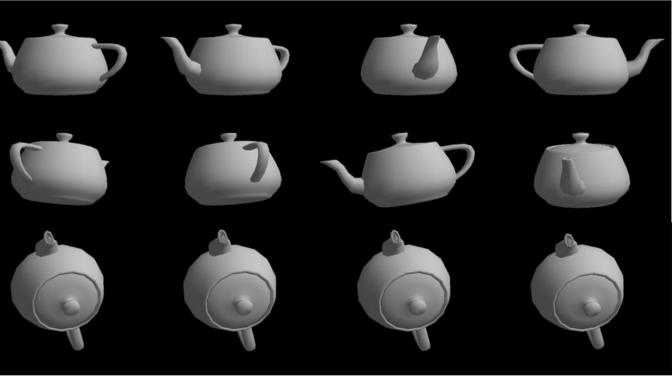


Figure 5: Teapot - SEN learns rotations in latent space correctly.

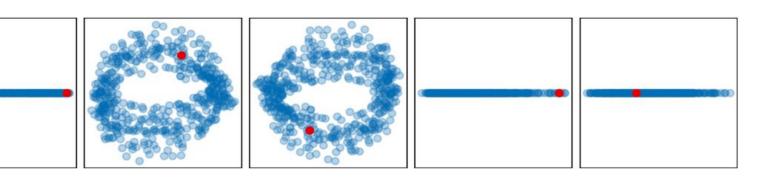


Figure 6: Reacher - learned latent factors. Middle factors are

• SEN generalizes to actions unseen during training.

	H@1 (10 step, %)	MRR (10 step, %)	$\operatorname{EE}(S)$	DIE (10 step, $\times 10^{-3}$)
ull	$\frac{2.8{\pm}0.6}{100{\pm}0.0}$	$\frac{5.3{\pm}0.4}{99.9{\pm}0.0}$	$0.00{\pm}0.00{\pm}0.0$ $0.00{\pm}0.0$	$0.19{\pm}0.0\\0.00{\pm}0.0$
	$52.3{\pm}14.\ 83.7{\pm}36.\ 99.9{\pm}0.0$	$\begin{array}{c} 61.8{\pm}13.\\ 86.0{\pm}31.\\ 100{\pm}0.0 \end{array}$	$\begin{array}{c} 0.98 {\pm} 0.2 \\ 0.81 {\pm} 0.5 \\ 0.96 {\pm} 0.3 \end{array}$	$181{\pm}79.\\15{\pm}9.1\\5{\pm}4.7$

Table 2: Next state prediction results for unseen actions.