Ngggl;fgi;em Learning Symmetric Embeddings for Equivariant World Models
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Motivation Symmetric Embedding Network SEN Contributions
e Neural networks equivariant to symmetries, such as Key idea: Pair SEN with a downstream equivariant e Learn implicitly hqw to map from pixel space with
rotation and translation, are more generalizable and network and train end-to-end. :”;”rgé‘f[? group action to feature space with a known
sample-efficient. y Y-
. oo e Flexible meta-architecture for variety of different symmetr
° Synl":_‘et:'l'e‘j‘_ '"_t_"at::al datafare C_"ff'f:l‘ltt totexpi:ess Meta-architecture: We propose a template for learning qroups. g g
analytically, limiting the use of equivariant networks. L P - -
y y J equivariant world models with input images for various e Extend advantages of equivariant neural network
downstream network architectures and symmetries (Figure 4). architectures to previously inaccessible domains.
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0 SEN is an unconstrained network that compresses inputs to
L _ feature space for which group action is known. Downstream RGSUltS
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L 0] ? R equivariant networks (Encoder and Transition Model) e Develop two measures of equivariance Equivariance Error
v | P provide inductive bias. (EE) and Distance Invariance Error (DIE).
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(\'ARV' NA SEN V3 _ _ _ _ B TH@1 TH@1 TH@1 HH@1 BE(S) DIE
» .. | 2 Learning is done end-to-end using a contrastive loss. o (yaw, %) _(pitch, %) (roll, %) (1 step, %) st X
D) . : Homeomorphic VAE 6.7 10.0 3.3 0.9 2.41 0.68
: Equivariant Networks 3D Teapot None " 6.7+6.7 60+40 86.7+6.6 93.9+2.2 2.38+0.04 3.41+0.16
F' 1 2D t t f b t b d I t ” Ours (MatMul) 100+0.0 100+0.0 100+0.0 100+0.0  0.05+0.0 0.45+0.01
igure 1. rotation or an opject Can pPe expressed analytlically _ i :
for pixels, whereas a 3D rotation is difficult to compute. B T Table 1: Teapot - SEN achieves lower EE and DIE.
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e Simple supervised sequence labeling task to test > e g W W

whether we can learn the input transformation
e Compose a fully connected (FC) layer with 1D
convolutional layers and compare against only FC
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Figure 5: Teapot - SEN learns rotations in latent space correctly.
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Figure 6: Reacher - learned latent factors. Middle factors are
consistent with arm joint rotations.

e SEN generalizes to actions unseen during training.

2D & 3D Shapes Rush Hour Reacher 3D Teapot Limited Hel MRR Ol
P P Actions A’ Miordel (10 step, %) (10 step, %) EE(s) (10 step, x1073)
‘ _ _ _ CNN 2.840.6 5.3+0.4 0.00+0.0 0.19+0.0
9 T1/2 rotation, T1/2 rotation, T1/2 rotation, 3D rotation ALY Shapes e} Ours/Full 100-0.0 09.940.0 0.00£0.0 0.00-0.0
. | object permutation object permutation flip, translation — 52311 618115 0.98:02 1817
FC+Conv Equivariant FC 3D Blocks  {up,right,down} Full 83.7+36. 86.0+31. 0.81+0.5 15+9.1
Figure 3: First FC layer weights. FC+Conv network C,- equivariant C,-equivariant  E(2)-steerable CNN, Matrix Hes avdan Wheme Bobiud D

learns shift equivariance MPNN MPNN equivariant MLP Multiplication Table 2: Next state prediction results for unseen actions.




